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General Information 

The Title of the Course varies widely.  We encountered:   Introduction to Proof 

Techniques; Introduction to Higher Mathematics;  Introduction to Abstract Mathematics; 

Foundations of Mathematics;  Foundations, Fundamentals of Mathematics; 

Communicating Mathematics;  Introduction to Mathematical Reasoning.   

 

Some institutions teach the course in the context of specific subject matter and the course 

title reflects this emphasis. Discrete Mathematics is quite common.  Other titles such as 

Linear Algebra; Introduction to Number Theory; Sequences, Series and Foundations; 

Laboratories in Mathematical Experimentation; are less widespread but present.  

Credit Hours per semester:  usually a 3-credit course.    

 

Target student audience: The course is aimed at mathematical sciences majors or 

minors---usually sophomores or advanced first year students who have completed some 

introductory college-level math courses and are ready to progress to abstract, higher-level 

mathematics courses.   

 

Prerequisites: Again, there are many possibilities.  The prerequisites are usually 

“mathematical maturity” prerequisites, rather than content-based prerequisites.  Calculus 

II seems to be the most common choice.  But there is a range that stretches from only 

Calculus I through Linear Algebra or Multivariable Calculus.  There is a trade-off 

between getting students doing serious mathematics very early in their college career and 

giving students a bit of time to mature intellectually before the transitions course.   This is 

a decision best made with knowledge of the local student population and in the context of 

more general curricular considerations.  

History and Unifying Themes 

 

The cognitive course goals assert that “every mathematical sciences major [should] help 

students acquire  ‘mathematical habits of mind.’  Students should develop the ability and 

inclination to use precise language, reason carefully, solve problems effectively, and use 

mathematics to advance arguments and increase understanding.”  Moreover, programs 

should, among other things, “promote students’ progress in . . . understand[ing] the 

importance of precise definition; deduce general principles from particular instances; 

assess the correctness of solutions, create and explore examples, carry out mathematical 

experiments, and devise and test conjectures; recognize and make mathematically 



rigorous arguments;  communicate mathematical ideas clearly and coherently both 

verbally and in writing;  approach mathematical problems with curiosity and creativity 

and persist in the face of difficulties; work creatively and self-sufficiently with 

mathematics.” 

 

Such skills are crucial in mathematics and so these goals seem unobjectionable.  

Unfortunately, jam-packed syllabi can create a tension between the imperative to cover 

content and giving students time to wrap their minds around the mathematics in these 

important ways.  All too often important cognitive goals give way to making sure our 

students “see” important mathematical ideas.  As instructors, we may close our eyes and 

cross our fingers, hoping that our students are coming to grips with the details outside of 

class time.  A few students do, picking up analytical and critical thinking skills by 

osmosis.  Most students can’t, however, because they have no idea how to go about it, or 

(worse) don’t know what it means to do so.   Such students can sometimes get through 

lower-level courses by imitation, but struggle in upper-level courses that require them to 

think abstractly, construct logical arguments, and use mathematical language precisely.   

It was this observation that led to the proliferation of so-called “transition” courses, 

which were rare in the early 1990’s but now are quite common.  The primary purpose of 

a transition course is to ramp up students’ abilities to think and approach problems like 

mathematicians, providing a cognitive bridge between more procedural lower-level 

courses such as Calculus and upper-level abstract courses such as Real Analysis, 

Probability Theory, or Abstract Algebra.   In transition courses, content goals take a back 

seat; the primary goals of the course are cognitive.  Where time constraints cause tension 

between cognitive goals and content coverage goals, content should always give way to 

activities that help students progress in developing analytical, critical-reasoning, 

problem-solving, and communication skills and acquiring mathematical habits of mind. 

  

Transition courses are, of course, not devoid of mathematical content. If students are to 

reason carefully, think critically, solve problems, and communicate mathematical ideas 

precisely, they must have ideas to grapple with, problems to solve, and opportunities to 

talk and write about mathematics.  However, the choice of mathematical “context” varies 

quite a bit.  Many institutions teach a course centered on standard “mathematical building 

blocks” such as sets, relations, functions, and so forth; others introduce students to 

mathematical reasoning in the context of specific subject matter.  Some elementary 

Discrete Mathematics courses, for instance, introduce students to conjecture and proof 

using simple counting techniques and elementary graph theory.  Other institutions offer 

an elementary Number Theory course or structure their introduction to Linear Algebra as 

their students’ introduction to higher mathematics.   Another interesting, but more 

unusual, approach is to introduce students to higher mathematics through mathematical 

experimentation that leads to conjecture and, finally, proof.  Despite the differences, these 

courses have one important thing in common:  the number of topics is deliberately kept to 

a minimum so that students can concentrate on developing careful use mathematical 

language, practice logical reasoning skills, and learn theorem-proving skills.  The 

emphasis throughout the course is on process rather than on content.  Moreover, work 

with written and oral communication of mathematical ideas is an essential part of the 

course.   



Central Goals 

 

The course should concentrate on training students in clear thinking and creative 

experimentation in the exploration of mathematical ideas.   Because proof solidifies 

intuition into certainty, the course should also focus on the careful use mathematical 

language, logical reasoning and proof.   The course should concentrate on imparting to 

students: 

 the ability to read, understand, and construct proofs;  

 the ability to write and speak about mathematics using precise mathematical 

language; 

 an understanding the role of definitions in mathematics and being able to use (and 

possibly construct) them effectively;   

 a basic understanding of  elementary logical principles and proof techniques.  

(Examples include the proper use of logical connectives and quantifiers, negation 

of mathematical statements, the equivalence of a statement and its contrapositive, 

direct proof, proof by contraposition, proof by contradiction, and proof by 

induction.)  

 an understanding of generalization and abstraction and their roles in mathematics; 

 the ability to create visual images from written mathematics and vice versa; 

 the ability to identify similarities and differences between mathematical objects. 

(E.g. what are the similarities and differences between the real numbers and the 

integers?) 

 knowing how to capture the essential elements of intuitive mathematical objects 

in precise language that can make them subject to rigorous mathematical analysis  

(e.g. definitions  and axiom systems) and understanding the importance of this 

process in mathematical discourse. 

Moreover, students don’t learn to do these things by watching someone else do them. In a 

large-scale study of university mathematics courses, Sandra Laursen et. al. [1] found 

“strong and consistent evidence about the dual importance of individual engagement and 

collaborative learning processes” for student learning outcomes.  Quoting from the results 

of this study:   

 

Student learning gains correlated statistically significantly with the 

fraction of class time spent doing student-centered activities (small group 

work, student presentation, computer work, and discussion), and anti-

correlated with the fraction of time spent listening to instructors talk. 

Similar correlations were found for the relation of learning outcomes to 

the proportion of class time that was student- or instructor-led, and for 

variables that reflect how students and instructors interact and share 

responsibility for the course. Moreover, statistical modeling shows that the 

degree of student-centered class time was the strongest predictor of 

student learning as measured by our broadest learning indicator, survey 

learning gains. 

 



This study gives important insight into good pedagogy for all mathematics courses.  

Unfortunately, student-centered activities take a great deal of time and may consequently 

be crowded out by the “coverage” imperatives of content-driven courses. (As students 

learn mathematics by doing mathematics, this is unfortunate, but it certainly happens.)  

However, as we have already noted, the most important goals of the transition course are 

cognitive goals.  Therefore a well-constructed syllabus for a transition course should 

always be “lean” enough in terms of content that students are actively engaged in the 

material at every step of the way---both in class and outside of class.    

Sample content lists   

 

It is not really important what mathematical “context” is used to teach mathematical 

reasoning and proof.  We emphasize again that the main imperative for the course is to 

give students many opportunities to come to grips with mathematical ideas and language 

and enough time to wrap their heads around the material in a way that leads to true 

ownership of the mathematical ideas. Nevertheless, it may be useful to have some 

examples of content covered in some transitions to proof courses.  There are other 

possibilities.  

 

Building blocks of Mathematics:  Basic logical principles and proof techniques.  

Elementary set theory---including unions, intersections, and complements and the 

relations between them.  Relations --- including orderings and equivalence relations.   

Functions --- including one-to-one and onto and inverse functions; function composition; 

images and inverse images of sets under a function. Infinite sets and Cardinality.  

Introduction to Number Theory:  Divisibility of integers, prime numbers and the 

fundamental theorem of arithmetic. Congruences --- including linear congruences, the 

Chinese remainder theorem, Euler’s j-function, and polynomial congruences, primitive 

roots. Other topics may be included as time permits. Some possibilities are:  Diophantine 

equations.  Number theoretic functions.  Approximation of real numbers by rational 

numbers. 

Discrete Mathematics: Basic logical principles and techniques of direct and indirect 

proof. Properties of integers and rational numbers. Sequences, induction, and recursion. 

Elementary set theory. Properties of relations and functions. Introduction to graph theory 

and/or introduction to combinatorics and probability. 

 

Mathematical Experimentation:  A selection of self-contained modules from various 

areas of mathematics (e.g. number theory, graph theory, geometry, sequences and series, 

complex numbers, dynamical systems) that lead to experimentation, conjecture, proof, 

generalization.   

 

Technology: the choice of whether to incorporate technology in the transition course 

seems very dependent on other choices made about how to structure the course.  For 

instance, a department that introduces proof through discrete mathematics or number 



theory may have students use computers to explore patterns and make conjectures (or 

not), whereas a course that is more focused on set theoretic building blocks may feel this 

is less useful.  Likewise, a course that has students explore mathematics experimentally, 

may or may not incorporate computation as tool.  Some institutions use the transitions 

course to introduce their students to the use of LaTeX.  Instructors in more advanced 

courses can then expect students to be able to typeset sophisticated mathematics in class 

projects, senior theses, etc.   

 

References:  

  

1.  Laursen, S., Hassi, M.-L., Kogan, M., Hunter, A.-B., & Weston, T. (2011). Evaluation 

of the IBL Mathematics Project:  Student and Instructor Outcomes of Inquiry-Based 

Learning in College Mathematics.  [Report prepared for the Educational Advancement 

Foundation and the IBL Mathematics Centers].  Boulder, CO: Ethnography & Evaluation 

Research, University of Colorado Boulder. 

 

The full report can be found at 

http://www.colorado.edu/eer/research/documents/IBLmathReportALL_050211.pdf 

Resources 

 

The following are lists of textbooks and other resources that might be useful for 

undergraduate courses that help students “transition to proof.”   

 

Textbooks  

 

Remark:  The presence of a text on this list is not meant to imply an endorsement 

of that text, nor is the absence of a particular text from the list meant to be an 

anti-endorsement.  The texts are chosen to illustrate the sorts of texts that support 

various types of transitions courses.  Please note that some of the books listed 
were written by the authors of this report. 

 

Basic Building Blocks of Mathematics:  The following texts support a transitions course 

built around a discussion of logic, sets, relations, and functions.  Most also feature a 

treatment of cardinality.    

 

1. Bloch, Ethan D.,  Proofs and Fundamentals: a first course in abstract 

mathematics, 2nd edition. Springer, 2011.  

 

Comments:  This book includes an extensive and detailed treatment of logical 

principles and proof techniques, including substantial narrative that discusses the 

ideas behind these principles and how they are used by mathematicians.  Also 

includes chapters on selected fundamental topics in Algebra, Combinatorics,  

Analysis, and Number Theory.   

 



2. Burger, Edward B., Extending the Frontiers of Mathematics: Inquiries into Proof 

and Argumentation, Wiley, 2008.  

 

Comments:  This book is structured as a long series of interconnected problems, 

made up of statements that may or may not be true---the instructions to the 

student are frequently to “prove and extend” or “disprove and salvage.”  Thus it 

supports an inquiry-based approach, and particularly encourages students to probe 

and conjecture.  The book includes chapters on selected topics in Number Theory, 

Discrete mathematics, Algebra, and Analysis.   

 

3. Schumacher, Carol, Chapter Zero: fundamental notions of abstract mathematics, 

2
nd

 Edition, Addison-Wesley, 2001.  

 

Comments:  This book supports an inquiry-based approach.  Thus it contains very 

few finished proofs, so it is structured as a long series of problems that are left for 

the students.  On the other hand, it supports the students’ mathematical 

development by helping them explore the motivation that underlies the ideas and 

by giving them practical tips about proof techniques and the construction of 

arguments.  Its discussion of logical principles and proof techniques is brief and 

informal.  Also includes chapters on selected elementary topics in Number 

Theory, and the Real Number System.   

 

4. Smith, Douglas., Maurice Eggen, and Richard St. Andre, A Transition to 

Advanced Mathematics, 8th edition, Cengage Learning, 2015.   

 

Comments:  This book lends itself to a course in which there is a mixture of 

lecture and inquiry.  It has a fairly extensive introduction to logic and approaches 

this more formally than some other books. The number of exercises is large and 

varied.  Includes chapters on selected elementary topics in Abstract Algebra and 

Analysis.      

 

Specific content areas:  The following texts are built around various possible content 

areas, as indicated by their titles.   Both are written with the goal that they will also be 

useful for introducing students to proof.   

 

1. Epp, Susanna, Discrete Mathematics with Applications, 3
rd

 Edition,  Cengage 

Learning, 2003.   

 

2. Marshall, David C., Edward Odell, and Michael Starbird, Number Theory through 

Inquiry,  MAA Textbooks, 2007.   

 

 

  



Mathematical Experimentation---the following book supports a transitions course 

focused on experimentation that leads to conjecture and finally proof.   

 

3. Mount Holyoke, Laboratories in Mathematical Experimentation:  A Bridge to 

Higher Mathematics, Springer-Verlag, 1997.  

 

Comment:  This book is no longer in print, but the full text and information about 

the way the course is taught at Mount Holyoke can be found here.  

https://www.mtholyoke.edu/acad/math/lab_experimentation 

 

Other relevant books 

 
These books discuss proof strategies, effective mathematical thinking, and problem-
solving that can be helpful for students who are in a transition to proof course.  Each 
might be useful as a supplementary text or for supplementary reading in any 
transitions course.   
 

4. Burger, Edward B., and Michael Starbird.  The 5 Elements of Effective Thinking, 

Princeton University Press, 2012 

 

5. Exner, George R., An Accompaniment to Higher Mathematics, Springer Verlag. 

New York, 1996.  

 

6. Polya, G., How to Solve It:  A New Aspect of Mathematical Method, 2
nd

 Edition.  

Princeton University Press, 1985.  

 

7. Solow, Daniel, How to Read and Do Proofs, 5
th

 Edition, Wiley, 2010.   

 

Articles from Mathematics Education Research: 

 

8. Alcock, L., & Weber, K. (2005), Referential and syntactic approaches to proof: 
Case studies from a transition course. In H. L. Chick & J. L. Vincent (Eds.). 
Proceedings of the 29th Conference of the International Group for the 
Psychology of Mathematics Education (Vol. 2, pp. 33-40). Melbourne: PME. 
 

Comments:  Two students from a transition-to-proof course were 
interviewed as they attempted proofs. One student, Brad, took a referential 
approach, meaning he used examples to make sense of the concepts. The 
other student, Carla, took a syntactic approach, meaning she used definitions 
and logic, but did not use examples. Both made progress on the proofs, but 
exhibited different strengths and different difficulties. The authors conclude, 
“Both students seem to have an underdeveloped notion of how to use 
examples and syntax together to construct a proof.” 

 

https://www.mtholyoke.edu/acad/math/lab_experimentation


9. Edwards, Barbara S. and Michael B. Ward,  Surprises from Mathematics 

Education Research:  Student (Mis)use of Mathematical Definitions, American 
Mathematical Monthly, 111(5), 411-424. 
 

Comments:  When Edwards reported that she had found that the definitions 
of “limit” and “continuity” were problematic for some of the real analysis 
students, Ward’s intuitive reaction was that those words were “loaded” with 
connotations from their nonmathematical use and from their less than 
completely rigorous use in elementary calculus. He said, “I’ll bet students 
have less difficulty or, at least, different difficulties with definitions in 
abstract algebra. The words there, like ‘group’ and ‘coset,’ are not so loaded.” 
So the authors decided to study student understanding and use of definitions 
in Ward’s own introductory abstract algebra. Ward was surprised to see his 
algebra students having difficulties very similar to those of Edwards’s 
analysis students. In particular, he was surprised to see difficulties arising 
from the students’ understanding of the very nature of mathematical 
definitions, not just from the content of the definitions. This article reports 
their findings. 
 

 

10. Epp, S. S. (1999). The language of quantification in mathematics instruction. In 

L. V. Stiff & F. R. Curcio (Eds.), Developing mathematical reasoning in grades 

K-12 (Chapter 16). Reston, VA: NCTM. 

 

Comments:  While ostensibly directed at teachers of grades K-12, this is the 
story of how Epp came to understand her own university students’ 
difficulties with quantifiers, and how she changed her teaching as a result. It 
is replete with down-to-earth teaching examples. 
 

11. Epp, S. S. (2009). Proof issues with existential quantification. In F.-L. Lin, F.-J. 

Hsieh, G. Hanna, & M. de Villiers (Eds.), Proceedings of the ICMI Study 19 

Conference: Proof and Proving in Mathematics Education, Vol. 1. (pp. 154-159). 

Taipei, Taiwan: The Department of Mathematics, National Taiwan Normal 

University. 

 

Comments:  In this short paper, Epp discusses issues connected with the use 
of existential quantification in mathematics proofs. Examples of common 
incorrect proofs from university students are given, and issues raised by the 
proofs are analyzed: (1) the use of bound variables as if they continue to exist 
beyond the statements in which they are quantified, (2) the implicit use of 
existential instantiation, (3) the “dependence rule” for existential 
instantiation, and (4) universal instantiation and its use with existential 
instantiation. Suggestions for responding to student errors are offered. 
 



12. Iannone, P., Inglis, M., Mejıa-Ramos, J. P., Simpson, A. & Weber K. (2010). Does 
generating examples aid proof production? Educational Studies in 
Mathematics, 77, 1-14. 
 
Comments:  Many mathematics education researchers have suggested that 
asking learners to generate examples of mathematical concepts is an 
effective way of learning about novel concepts. To date, however, this 
suggestion has limited empirical support. Undergraduate students were 
asked to study a novel concept by either tackling example generation tasks, 
or reading worked solutions to these tasks. However, there was no advantage 
for the example generation group on subsequent proof production tasks. The 
authors found that undergraduate students overwhelmingly adopt a trial-
and-error approach to example generation, and suggest that different 
example generation strategies may result in different learning gains. The 
authors conclude by stating that the teaching strategy of example generation 
is not yet understood well enough to be a viable pedagogical 
recommendation.   
 

13. Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A, (2011). An 
assessment model for proof comprehension in undergraduate mathematics. 
Educational Studies in Mathematics, 79(1), 3-18. 
 
Comments:  The authors consider what it means to comprehend a proof and 
how to assess that comprehension, by means other than simply having 
students reproduce a proof from memory. They consider how a proof is 
understood in terms of the meaning, logical status, and logical chaining of its 
individual statements, but also in terms of the proof ’s high-level ideas, its 
main components, the methods it employs, and how it relates to specific 
examples. The authors illustrate how each of these types of understanding can 

be assessed using a proof in number theory. 

 

14. Moore, R. C. (1994).  Making the transition to formal proof.  Educational 
Studies im Mathematics, 27, 249-266. 
 
Comments:  This is the first math education research study of a transition-to-
proof course.  The author observed the course and interviewed the students. 
He analyzed the data using the ideas of concept image, concept definition, 
and concept usage. He found seven kinds of student difficulty:  the students 
did not know the definitions; they had little intuitive understanding of the 
concepts; their concept images were inadequate for doing proofs; students 
were unwilling or unable to generate examples; they did not know how to 
use the statement of a theorem to structure its proof; they were unable to 
understand and use mathematical language and notation; and they did not 
know how to get started on writing a proof.  
 



15.  Selden, A., & Selden, J. (2003). Validations of proofs considered as texts:  Can 
undergraduates tell whether an argument proves a theorem? Journal for 
Research in Mathematics Education, 34(1), 4-36.   
 
Comments:  The authors report on an exploratory study of the way eight mid-
level undergraduate mathematics majors read and reflected on four student-
generated arguments purported to be proofs of a single theorem.  The results 
suggest that mid-level undergraduates tend to focus on surface features of 
such arguments and that their ability to determine whether arguments are 
proofs is very limited -- perhaps more so than either they or their instructors 
recognize. They begin by discussing arguments (purported proofs) and 
validations of those arguments, that is, reflections of individuals checking 
whether such arguments really are proofs of theorems.  The authors provide 
a detailed analysis of the four student-generated arguments and finally 
analyze the eight students' validations of them.  

 

16. Selden, A. & Selden, J. (2008). Overcoming students' difficulties in learning to 
understand and construct proofs. In M. P. Carlson and C. Rasmussen (Eds.), 
Making the Connection: Research and Teaching in Undergraduate Mathematics 
Education (pp. 95-110), MAA Notes Volume No. 73. Washington, DC: 
Mathematical Association of America. 
 
Comments:  This chapter provides an overview of students’ difficulties in 
learning to understand and construct proof. The major sections are titled:  
the curriculum and students’ and teachers’ conceptions of proof, 
understanding and using definitions and theorems, knowing how to read and 
check proofs, knowing and using relevant concepts, bringing appropriate 
knowledge to mind, knowing what's important and useful, and teaching 
proof and proving. 
 

17. Tall, D.  (1998). The cognitive development of proof: Is mathematical proof 
for all or for some?  In Z. Usiskin (Ed.), Developments in school mathematics 
education around the world (Vol.  4, pp. 117–136). Reston, Virginia: NCTM. 
Also:   
http://homepages.warwick.ac.uk/staff/David.Tall/downloads.html 
 
 
Comments:  Proof  is often difficult to teach. In this paper, Tall suggests that 
different forms of proof are appropriate in different contexts, dependent on 
the particular forms of representation available to the individual, and that 
these forms become available at different stages of cognitive development. 
For a young child, proof may be a physical demonstration, long before 
sophisticated use of the verbal proofs of Euclidean geometry can be 
introduced successfully to a subset of the school population. Later still, 
formal proof from axioms involves even greater difficulties that make it 

http://homepages.warwick.ac.uk/staff/David.Tall/downloads.html


appropriate for a few, but impenetrable to many. At this formal stage of 
development, Tall identifies two different strategies that students adopt to 
come to terms with formal definition and deduction. Either strategy may be 
successful, but both are cognitively demanding and prove difficult for many 
to achieve. This leads to the observation that formal proof is appropriate only 
for some, that some forms of proof may be appropriate for more, and that, if 
one allows the simpler representations of proof such as those using physical 
demonstrations, perhaps some forms of proof are appropriate for (almost) 
all. 
 

18. Weber, Keith, Students’ Difficulties with Proof.  MAA Online:  Research 

Sampler.  No 8, June 2003.   

http://www.maa.org/programs/faculty-and-departments/curriculum-department-

guidelines-recommendations/teaching-and-learning/research-sampler-8-students-

difficulties-with-proof 

 

Comments:  Weber discusses what is meant by the word “proof,” in various 

contexts, and the role that proof plays in mathematics.  With this backdrop, he 

discusses the difficulties that many students experience with learning to prove 

theorems.  Finally he makes some suggestions about how to effectively teach 

students the concept of proof.  The paper is rich in additional references from the 

literature.   

 

http://www.maa.org/programs/faculty-and-departments/curriculum-department-guidelines-recommendations/teaching-and-learning/research-sampler-8-students-difficulties-with-proof
http://www.maa.org/programs/faculty-and-departments/curriculum-department-guidelines-recommendations/teaching-and-learning/research-sampler-8-students-difficulties-with-proof
http://www.maa.org/programs/faculty-and-departments/curriculum-department-guidelines-recommendations/teaching-and-learning/research-sampler-8-students-difficulties-with-proof

